PR UHEHIRA S BORERE i i

Bt (R) AR | a2l | 3R | BT 206 RS Linux R4t

SER AR 6 = H¥ (11 H6H BT £
5. A | 2000770081 Z/AMAE | S (10 2pffl) - e H -

PELF I

2. SEIHE
& Linux AL IRERCHFILS G 5) W80k,

2. WE (. i
F fentl A1 lockf B 75 sSLBLSCAFIE B, SIS iR 2 A SR R
D ERPHLFMN, FEE SRR R R0 H: open, read, write, close, Iseek.
2) BRIBENLTM, #47& lockf, fontl A1 flock BRI & Fh S8 & Lo
3) X Linux F CIBERITFNME . k. BATANHREA.

SO TR BEIE L AR B —MLH] . M2 AP R EILE AN SRR,
Linux J8 & K I 7722 40 SO/ B8, Skl e S i B IR P AR Se 4 IR S
XS EIEER VSR SR P B -
BUESL: ZoREAMMEA B8 R SR S R AL, FFHEECAM
Bl E—BAEIT, WIZHMRGEAMLHEBES, BAUKFERT 5B A HE .
R MESE: Rt ARBATIOEL, S— A SO EBUEAT S AR HE, A RE
1 FAPAT AR SO AT AT S S 45 o RGBT PERE I RE IR K, BRI S 4T
AR R S A . A mount 34 “mand” S HURE MU RS, A e
TE A RSO e v i B D e .
lockf, fentl A1 flock Ff) ELk:
® flock Al fentl & 2451, 17 lockf /& 2 bR . lockf S2fn b= fontl fyds 2
® flock BREUA BEXT BN SCMF R4, AN REXS SCHF)3 —36 70 B4, fentl/lockf mf
DA SCA R A DX 5 4
® flock RAE A IWMES; ol DAL ESIHFE B, lockf RSCRrHFESL, HEZ
fentl HLIHIZ:44 flock 7] LAA5 RDLCK #28.
® flock ANEEFE NFS X R4t FAEH, WS EAE NFS SR8, W68 H fentl.
® flock K H BSD Ifii lockf >k H POSIX, FrLA lockf 8% fontl SEELAIEATESE R X
N fif POSIX 4

3. HEH. T 5EIL
(1) #F flock EREFM

[root@hadoopl@® experiment_003]# man 2 flock

1/11

FLOCK(2) Linux Programmer's Manual FLOCK(2)

NAME

flock - apply or remove an advisory lock on an open file

SYNOPSIS

#include <sys/file.h>

int flock(int fd, int operation);

DESCRIPTION

RETURN

ERRORS

Apply or remove an advisory lock on the open file specified by fd. The argu-
ment operation is one of the following:

LOCK_SH Place a shared lock. More than one process may hold a shared
lock for a given file at a given time.

LOCK_EX Place an exclusive lock. Only one process may hold an exclusive
lock for a given file at a given time.

LOCK_UN Remove an existing lock held by this process.

A call to flock() may block if an incompatible lock is held by another
process. To make a nonblocking request, include LOCK_NB (by ORing) with any
of the above operations.

A single file may not simultaneously have both shared and exclusive locks.

Locks created by flock() are associated with an open file table entry. This
means that duplicate file descriptors (created by, for example, fork(2) or
dup(2)) refer to the same lock, and this lock may be modified or released
using any of these descriptors. Furthermore, the lock is released either by
an explicit LOCK_UN operation on any of these duplicate descriptors, or when
all such descriptors have been closed.

If a process uses open(2) (or similar) to obtain more than one descriptor for
the same file, these descriptors are treated independently by flock(). An
attempt to lock the file using one of these file descriptors may be denied by
a Llock that the calling process has already placed via another descriptor.

A process may hold only one type of lock (shared or exclusive) on a file.
Subsequent flock() calls on an already locked file will convert an existing
lock to the new lock mode.

Locks created by flock() are preserved across an execve(2).

A shared or exclusive lock can be placed on a file regardless of the mode in
which the file was opened.

VALUE

On success, zero is returned. On error, -1 is returned, and errno is set
appropriately.

EBADF fd is not an open file descriptor.

#E lockf R % F Mt
[root@hadoopl@® experiment_003]# man 3 lnckFI

LOCKF(3) Linux Programmer's Manual LOCKF(3)

NAME
lockf - apply, test or remove a POSIX lock on an open file

SYNOPSIS
#include <unistd.h>

int lockf(int fd, int cmd, off_t len);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

lockf():
_BSD_SOURCE || _SVID_SOURCE || _XOPEN_SOURCE >= 500 ||
_XOPEN_SOURCE && _XOPEN_SOURCE_EXTENDED

DESCRIPTION

Apply, test or remove a POSIX lock on a section of an open file. The file is
specified by £fd, a file descriptor open for writing, the action by cmd, and
the section consists of byte positions pos..post+len-1 if len is positive, and
pos-len..pos-1 if 1len is negative, where pos is the current file position,
and if len is zero, the section extends from the current file position to
infinity, encompassing the present and future end-of-file positions. In all
cases, the section may extend past current end-of-file.

On Linux, lockf() is just an interface on top of fentl(2) Tlocking. Many
other systems implement 1lockf() in this way, but note that POSIX.1-2001
leaves the relationship between Llockf() and fentl(2) 1locks unspecified. A
portable application should probably avoid mixing calls to these interfaces.

Valid operations are given below:

F_LOCK Set an exclusive lock on the specified section of the file. If (part
of) this section is already locked, the call blocks until the previous
lock is released. If this section overlaps an earlier locked section,
both are merged. File locks are released as soon as the process hold-
ing the Tlocks closes some file descriptor for the file. A child
process does not inherit these locks.

F_TLOCK
Same as F_LOCK but the call never blocks and returns an error instead
if the file is already locked.

F_ULOCK
Unlock the indicated section of the file. This may cause a locked
section to be split into two locked sections.

F_TEST Test the lock: return @ if the specified section is unlocked or locked
by this process; return -1, set errno to EAGAIN (EACCES on some other
systems), if another process holds a lock.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set
appropriately.

ERRORS

Manual page lockf(3) line 1 (press h for help or q to quit)
(3) &F fontl T

[root@hadoopl@® experiment_003]# man fcntl

3/1

FCNTL(2) Linux Programmer's Manual FCNTL(2)

NAME
fentl - manipulate file descriptor

SYNOPSIS
#include <unistd.h>
#include <fentl.h>

int fentl(int fd, int cmd, ... /* arg */);

DESCRIPTION
fentl() performs one of the operations described below on the open file
descriptor fd. The operation is determined by cmd.

fentl() can take an optional third argument. Whether or not this argument is
required is determined by cmd. The required argument type is indicated in
parentheses after each cmd name (in most cases, the required type is int, and
we identify the argument using the name arg), or void is specified if the
argument is not required.

Duplicating a file descriptor
F_DUPFD (int)
Find the lowest numbered available file descriptor greater than or
equal to arg and make it be a copy of fd. This is different from
dup2(2), which uses exactly the descriptor specified.

On success, the new descriptor is returned.
See dup(2) for further details.

F_DUPFD_CLOEXEC (int; since Linux 2.6.24)
As for F_DUPFD, but additionally set the close-on-exec flag for the
duplicate descriptor. Specifying this flag permits a program to avoid
an additional fentl() F_SETFD operation to set the FD_CLOEXEC flag.
For an explanation of why this flag is useful, see the description of
O_CLOEXEC in open(2).

File descriptor flags
The following commands manipulate the flags associated with a file descrip-
tor. Currently, only one such flag is defined: FD_CLOEXEC, the close-on-exec
flag. If the FD_CLOEXEC bit is @, the file descriptor will remain open
across an execve(2), otherwise it will be closed.

F_GETFD (void)
Read the file descriptor flags; arg is ignored.

F_SETFD (int)
Set the file descriptor flags to the value specified by arg.

File status flags
Each open file description has certain associated status flags, initialized
by epen(2) and possibly modified by fentl(). Duplicated file descriptors
(made with dup(2), fentl(F_DUPFD), fork(2), etc.) refer to the same open file
description, and thus share the same file status flags.

Manual page fcntl(2) line 1 (press h for help or q to quit)

(1) BTGB
e %5 lock-1.c LA

4 /11

main()

fd;

pid_t pid;

£d = open(PATH, O_RDWR|O_CREAT|O_TRUNC,);
if (fd < 0] {
perror();

Exit();

}

if (flock(fd, LOCK_EX) <) {
perror(J;
exit(1);

}

printf(, getpid());

pid = fork();

if (pid < 0) {
perror(
exit(1);

}

if (pid == 0] {

if (flock(fd, LOCK_EX) < ©) {
perror();
exit(1);
}
printf(, getpid());
exit(7);
}
wait();
unlink(PATH);
sleep(10);
exit(0);

"lock-1.c" 54L, 1176C

o GRiRELT

[root@hadoopl@®® experiment_003]# gcc lock-l.c -o lock-1
[root@hadooplO® experiment_003]# # ./lnck—l&l

[root@hadoopl®® experiment_003]1# Llslocks | grep lock
® /tmp/Code: :Blocks-root

codeblocks 3494 POSIX 5B WRITE © [}
master 1393 FLOCK 33B WRITE © c] 0 /var/lib/postfix/master

lock

SRR IR AT

6/ 11

main()

fd;

pid_t pid;

fd = open(PATH, O_RDWR|O_CREAT|O_TRUNC,);
if (Ffd < ©) {

perror();

exit();
3

if (flock(fd, LOCK_EX) < o) {
perror();
exit();

¥

printf(, getpid());

pid = fork();

if (pid < ©) {
perror(
exit();

3

if (pid ==) {
fd = open(PATH, O_RDWR|O_CREAT|O_TRUNC,);
if (Fd <) {

perror(J);
exit(1);
}

if (flock(fd, LOCK_EX) < ©) {
perror();
exit(1);
3
printf(, getpid());
exit();
H
wait();
unlink(PATH);
sleep();
exit();

[root@hadoopl®® experiment_003]# gcc lock-2.c -o lock-2
[root@hadoopl@® experiment_003]# ./lock-2&
[1] 4e32

[root@hadoopl@® experiment_003]# U4032: locked!

[root@hadoopl@® experiment_003]# Llslocks | grep lock

codeblocks 3494 POSIX 5B WRITE @ 0] @ /tmp/Code::Blocks-root
lock-2 4033 FLOCK OB WRITE* 0 0 0 /root/course/experiment
s/experiment_003/lock

lock-2 4032 FLOCK OB WRITE @ 2] ® /root/course/experiment
s/experiment_003/lock

master 1393 FLOCK 33B WRITE © [c} 0 /var/lib/postfix/master
.lock

[root@hadoopl@® experiment_003]# ps
PID TTY TIME CMD
3619 pts/1 00:00:00 bash
4032 pts/1 00:00:00 lock-2

4033 pts/1 00:00:00 lock-2
4078 pts/1 00:00:00 ps

[root@hadoopl®® experiment_003]1# kill
[root@hadoopl@® experiment_003]# ps
PID TTY TIME CMD
3619 pts/1 00:00:00 bash
4033 pts/1 00:00:00 lock-2
4093 pts/1 00:00:00 ps
[1]1+ BER%E ./lock-2

[root@hadoopl®® experiment_B03]# Llslocks | grep lock

codeblocks 3494 POSIX 5B WRITE © [c] 0 /tmp/Code: :Blocks-root
lock-2 4033 FLOCK ©B WRITEx © 0 0 /root/course/experiment
s/experiment_003/lock

master 1393 FLOCK 33B WRITE @ ¢} 0 /var/lib/postfix/master
.Lock

[root@hadoopl@® experiment_003]1# I

F lockf (fd, F_LOCK, 0)#&#e Bk SCAFHH flock, FEPKE SRR (5t
FEAST I SCE), TR .

8/ 1

main()

fd;

pid_t pid;

fd = open(PATH, D_RDWR|D_CREAT|O_TRUNC,
if (fd <) {

perror();

exit(1);
}

if (lockf(fd, F_LOCK, ©) <) {
perror();
exit(1);

}

printf(, getpid());

pid = fork();

if (pid <) {
perror(
exit(1);

}

if (pid == 0 {

Bf (lockf(fd, F_LOCK, ©) <) {
perror();
exit();

¥
printf(, getpid());
exit(9);

¥

wait();

unlink(PATH);

sleep(10);

exit(0);

[root@hadoopl@® experiment_003]# gcc lock-3.c -o lock-3
[root@hadoopl@@ experiment_003]# ./lock-3&

[1] 4135

[root@hadoopl@@ experiment_003]# U4135: locked!

[root@hadoopl@® experiment_003]1# lslocks |grep lock

codeblocks 3494 POSIX 5B WRITE @ 0@ /tmp/Code: :Blocks-root
lock-2 4033 FLOCK @B WRITE* © ® /root/course/experiment
s/experiment_003/lock

lock-3 4136 POSIX @B WRITE* © ® /root/course/experiment
s/experiment_003/lock

lock-3 4135 POSIX OB WRITE © ® /root/course/experiment
s/experiment_003/lock

master 1393 FLOCK 33B WRITE © 0 /var/lib/postfix/master
.Llock

[root@hadoopl@@ experiment_003]1# I

F fontl S5 i) P 4

10/ 11

ﬂ main(argc, xxargv) f{
if Carge >) {
fd = open(argv[], O_WRONLY);
if(fd == -1) {
printf(
exit();
}
flock lock;

lock.l_type = F_WRLCK;
lock.l_start =
lock.l_whence =
lock.l_len = °;
lock.l_pid = getpid();

ret = fentl(fd, F_SETLKW, &lock);
print+(, ret);
if(ret==") {
while (1) {
scanf(

[root@hadoopl@® experiment_003]# gcc mlock.c —o mlock

4. My (s r)
Y5kt A &

n/1

